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Coupled random dynamics

Let a random dynamical system consist of both dynamics on a
state space (deterministic dynamics, F ) and a probability space
(noise, ω). One has a coupled RDS when the degrees of freedom
of one or more RDSs interact with a given RDS (typically
bidirectionally)

Ex: additive Wiener noise dX t = F (Xt , t)dt + dWt . Suppose the
state of some other system appears in F ; this is coupled

In physics, coupled RDSs are a proxy for complexity: they are
generically open, path-dependent, non-linear, and
out-of-equilibrium; they fluctuate and exhibit signs of complexity,
and do computations
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Why is the synchronisation of statistics interesting?

Two (related) problems:

▶ Hard to understand coupled random dynamical systems using
analysis

▶ Hard to understand coupled random dynamical systems using
physics

Two (hopefully related) solutions:

▶ Reduce complex systems to Bayesian estimators or controllers;
avoid stochastic analysis, uses other tools

▶ Deduce a simpler physics for inferential objects and map it
back to ‘material physics’
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Relation to other fields

Bayesian mechanics draws on constructions in cybernetics, as well
as the free energy principle and active inference

Connects to the physics of non-equilibria via stochastic
thermodynamics and the principle of maximum calibre

Augments methods in stochastic analysis like path-wise analysis
and large deviations principles

Connections to supersymmetry suggest a well-axiomatised physics
of complexity grounded in topology

So far nothing in applied category theory
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Bayesian mechanics draws on constructions in cybernetics, as well
as the free energy principle and active inference

Connects to the physics of non-equilibria via stochastic
thermodynamics and the principle of maximum calibre

Augments methods in stochastic analysis like path-wise analysis
and large deviations principles

Connections to supersymmetry suggest a well-axiomatised physics
of complexity grounded in topology

So far nothing explicitly in applied category theory
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Synchronisation

There are two ingredients to synchronisation between coupled
random dynamical systems:

▶ separation

▶ estimation

These define inference
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Inference and estimation

There exists some map

stone
forecast−−−−−→ weather,

forecast(stone) 7→ weather

such that the stone and the weather are coupled

This relation is conditional on the boundary of the stone
interacting with weather states

Extracting ‘weather’ from ‘stone’ requires knowing that map, and,
that the map is an injection

We call mapping ‘stone’ to ‘weather’ estimation
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Inference and estimation

Let states of the stone be denoted by µ (resp weather states by η)
and let σ be the forecast. Let b be the boundary (‘Markov
blanket’) between the two systems. System states are related by
this common interface

Then there exists a map σ : µ(b) 7→ η(b)

µ estimates η by being the preimage of σ

η can be inferred* from µ by σ
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Inference and estimation

Let states of the stone be denoted by µ (resp weather states by η)
and let σ be the forecast. Let b be the boundary (‘Markov
blanket’) between the two systems. System states are related by
this common interface

Then there exists a map σ : µ(b) 7→ η(b)

µ estimates η by being the preimage of σ

η can be inferred* from µ by σ

*More like read off: no uncertainty introduced yet
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Instant inference: just add noise

Suppose µ (resp η) is a state of a random dynamical system with
probability measure p(µ) dµ (resp p(η) dη)

Moreover suppose the mean µ̂ is a sufficient statistic for p(µ) dµ
(and likewise for η)

Now define conditional expectations, and a map σ : µ̂(b) → η̂(b)

One system estimates the parameters of the probability density
over states of the other:
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Instant inference: just add noise

Suppose µ (resp η) is a state of a random dynamical system with
probability measure p(µ) dµ (resp p(η) dη)

Moreover suppose the mean µ̂ is a sufficient statistic for p(µ) dµ
(and likewise for η)

Now define conditional expectations, and a map σ : µ̂(b) → η̂(b)

One system estimates the parameters of the probability density
over states of the other: Bayesian inference
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Separation

These statistics are conditional on the state of the boundary, b

(i.e., µ̂(b), η̂(b) are conditional expectations, conditioned on some
event b)

We think of these systems as interacting via shared b states. . .
. . . but we also want them to be separable
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Separation

Q: What makes two random dynamical system different?

A: They are statistically distinguishable: observed samples,
statistical properties, etc, are different ⇐⇒ non-mixing, distinct
systems (see arXiv:2207.07620 for a sketch)

Q: How do we model systems which couple but remain statistically
distinct?

A: The parameters µ̂ and η̂ must be independent conditioned on
the state b

Bayesian Mechanics Dalton A R Sakthivadivel
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Separation

Q: What makes two random dynamical system different?

A: They are statistically distinguishable: observed samples,
statistical properties, etc, are different ⇐⇒ non-mixing, distinct
systems (see arXiv:2207.07620 for a sketch)

Q: How do we model systems which couple but remain statistically
distinct?

A: The parameters µ̂ and η̂ must be independent conditioned on
the state b (this is a sort of closure condition)
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Separation and boundaries

Ref: Lemma 4.3, arXiv:2204.11900

Consider the following factorisation of our set of systems:

µ̂b
µ−1

−−→ b
η−→ η̂b

where each such intermediate map is linear in b

If we write this sequence of evaluations as the tensor-Hom adjunct

[b, η̂b]⊗ ([µ̂b, b]⊗ µ̂b) → η̂b ∼= [b, η̂b]⊗ [µ̂b, b] → [µ̂b, η̂b]

we recover a function σ = (η ◦µ−1)(b) we can do calculations with
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Putting the pieces in place

We have

▶ two systems separated by a boundary

▶ a coupling, allowing us to relate the systems across that
boundary

▶ a relationship between the statistics of the systems that
induces inference

How can we use this to model two systems?
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Parameterisation

Suppose η̂b is a sufficient statistic. Then there exists a density
q(η; η̂b). By synchronisation this is equivalent to q(η;σ(µ̂b)).

Variational inference: when (on average) the system obtains the
state expected for a given blanket, it models its environment.

Mathematically: q(η|µ) where µ = µ̂b yields q(η) by σ(µ̂b) = η̂b.

Not guaranteed that q(η|µ = µ̂b) = p(η)—depends on how useful
the parameter is
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Parameterisation

This can be written as a maximum entropy problem

Under the constraint that q = p we have

−
∫

q log q +

∫
q log p = 0 (1)

for the entropy of q.

Solution is p = q.
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Parameterisation

Now use the fact that σ(µ̂b) is a sufficient statistic for q. Under
the constraint that η minimises its distance from σ(µ̂b), we have

−
∫

q log q − λ

∫
[η − σ(µ̂b)]

2q = 0

Solution becomes

− log q = λ[η − σ(µ̂b)]
2 (2)

which is a Gaussian with variance λ[η − σ(µ̂b)]
2.

Bayesian Mechanics Dalton A R Sakthivadivel
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Some observations on the last

Eq (1) is a generalised free energy functional

Eq (2) says a system minimises surprisal when it does inference
(i.e. when we have µ such that η = σ(µ̂b)

We call this mode-matching: system fits a Gaussian density q to p
by matching the mean of q to the most likely state of p (Laplace
approximation)
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Why are these interesting observations?

Recovers the free energy principle and active inference

Phrases coupled RDSs as surprisal minimisers or mode-matchers
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A cybernetical example

Imagine a system with a preferred µ̂b. There are two ways to
minimise surprisal:

▶ Update preferences µ̂b

▶ Change the system to which it is coupled such that
σ−1(η̂b) = µ̂b

If a system embodies its environment, then action is changing
what is embodied: this is a control theory

Open question

Can this be extended to planning and the control of future states?
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Gradient ascents

Due to our Laplace assumption we can determine that a gradient
descent on surprisal is a gradient ascent on probability

≡ the least surprising state is the most likely state

This allows us to write coupled random dynamics as a particular
gradient flow on surprisal

Reference: Markov blankets, information geometry and stochastic
thermodynamics and related papers like arXiv:2106.13830,
arXiv:2205.07793

This recovers quite a lot of physics by representing the statistics of
fluctuations as dynamics on surprisal

Bayesian Mechanics Dalton A R Sakthivadivel
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Statistical properties of physical dynamics

A physical state µ now carries a belief parameterised by that state,
with the optimal belief lying at µ̂b

Changes in µ̂b change the belief held: Bayesian updating

As in all of statistical physics we have changed from physical
dynamics to statistical properties of those dynamics
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Motion on statistical manifolds

By changing µ̂b we change the belief embodied by the system:
motion in a space of probability densities

This is called a statistical manifold (S(−)). The study of statistical
manifolds is information geometry

Since the systems are coupled we have a dual information
geometry where points in one statistical manifold can be written in
terms of points in the other

Let f be a function on S(µ). Derivations on this manifold are
constructed so as to yield ∇f (µ) = ∇f (σ−1(η))∇σ−1(η)

Leads to an intuition that there is something lens-y going on
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Concluding remarks

▶ Things that are coupled do statistical estimation

▶ Things that are coupled minimise surprisal when those
estimates are ‘right’

▶ This means things that are coupled do inference

▶ But not always well

▶ This inference-from-coupling admits action

▶ It also recovers some physics

Bayesian Mechanics Dalton A R Sakthivadivel
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